Barrier RF Stacking

Weiren Chou Fermilab, USA October 31, 2002

Presentation to the RPIA2002 Workshop October 29–31, 2002, KEK, Japan

Outline

- Motivation and goals
- Introduction of the method
- Hardware requirement and specs
- Summary

http://www-bd.fnal.gov/pdriver/barrier/

Motivation

- To increase the Tevatron luminosity in Run2 by increasing the proton intensity on the pbar production target (2 x 1 Booster batch)
- To increase the neutrino flux in NuMI experiment by increasing the proton intensity on the pion production target (2 x 6 Booster batches)

Fermilab Accelerator Complex

Bottleneck - Booster

- The Booster is a bottleneck limiting the proton beam intensity in the Fermilab accelerator complex.
- The Linac can provide 3e13 particles per cycle
- The Main Injector with moderate upgrade can accept 3e13 protons per cycle
- However, the Booster can only accept and deliver 5e12 particles per cycle

Booster Beam Loss

For 0, 2, 4, 6, 8, 10, 12, 14 Injected Turns

Booster Energy Loss

Solution - Stacking

- A solution is to stack two Booster bunches into one Main Injector RF bucket
- This is possible because the Main Injector momentum acceptance (0.4 eV-s) is larger than the Booster bunch emittance (0.1 eV-s)

Stacking Goals

- Goal for Run2 To increase protons per second (pps) on the pbar target by 50%
 - Present: 4.5e12 every 1.467 sec
 - Goal: 2 x 4.5e12 every 2 sec
- Goal for NuMI To increase pps on the NuMI target by 60%
 - Baseline: 3e13 every 1.867 sec
 - Goal: 2 x 3e13 every 2.333 sec

Method

- A straightforward way is to inject two Booster batches into the MI, confine them by RF barrier buckets, then move the barrier to compress the beam.
- But the compression must be slow (adiabatic) in order to avoid emittance growth. This would lengthen the injection process and thus reduce protons per second (pps)
- A better way (first proposed by J. Griffin) is to inject Booster batches off-axis so that the injection can be continuous

Injection Beam On-Axis (Recycler, courtesy C. Bhat)

Injection Beam Off-Axis (12-batch stacking, courtesy K-Y. Ng)

13

16

18

Injection Beam Off-Axis (2-batch stacking, courtesy K-Y. Ng)

Barrier RF Stacking *vs.* Slip Stacking

- One main advantage of barrier RF stacking is smaller beam loading effect thanks to lower peak beam current
- Another "advantage" is that we didn't know much about this method and have never tried. (By contrast, we already know how hard slip stacking is.)

Key Issue

- Booster beam must have a small ∆p/p to start with (required ∆E about ±6 MeV)
- This means one has to control the instability of the Booster beam by means of: (a) longitudinal damper, (b) RF frequency modulation, and to perform a bunch rotation prior to extraction

Hardware

- Task: To build a ± 6 kV wideband RF system (i.e, the barrier RF) using Finemet cavities and high voltage fast switches
- Cavity: Based on the design of an RF chopper that was built by a Fermilab-KEK collaboration via a US-Japan Accord. Hitachi Metals Ltd. (Japan) will supply the Finemet cores

Hardware (cont...)

- Switch circuit: Also based on the design of the RF chopper. Behlke Co. (Germany) will supply the switches (solid state HTS series).
- However, there is an important difference between the chopper circuit and the barrier RF circuit. The former uses a pair of +V and -V pulses. The latter has two types. One of them requires a zero-voltage gap between +V and -V pulses. Therefore, the circuit must be modified. (No good design yet; Help welcome)

Two Types of Barrier

October 31, 2002

Finemet Core

ELECTRICAL CHARACTERISTICS 電気特性

 COMPLEX PERMEABILITY 捜索透磁率
 Frequency
 1MHz
 5MHz

 は
 上*
 ≥1700
 ≥350

 まる2000
 ≥1000

> EQUIPEMENT:LCR METER HP-4284A or EQUIVALENT CONDITION:0.5Vrms MEASURING MODE: SERIES MODE

			_		_
				4	L
			1	3	
			1	2	
SCALE	A	UNIT(mm)	1	1	Г
:	A -1		gry.	No.	T
DIVN.	H. Ogura	02-9-20	GENER) DIMEN	il toler Sion	W
CHKD.	1. Fragie	102-9-20	±		
CHKD.	J. Shonowork	62.9.20	TITLE FT-	-3M	
APPO.			1	D 50	0-
0	Hitachi I	Metals.	Ltd.	FN	ī
•					

Finemet Core (cont...)

Finemet Cavity as a Chopper (installed on the linac of HIMAC in Chiba)

High Voltage Fast Switch

HTS 161-06-GSM 2x16kV / 60A HTS 301-03-GSM 2x30kV / 30A

- Fast transition times, rise time and fall time ~20 ns
- Variable pulse width from 200 ns to infinity
- No pulse droop and very low ripple on the pulse top
- No working resistor power, small buffer capacitors

PUSH-PULL

- Patented -Made in Germany

Finemet vs. Ferrite (4M2)

Finemet vs. Ferrite (4M2) (cont...)

31

Finemet Core Specs

- OD = 500 mm
- ID = 139.8 mm
- t = 25 mm
- Stainless steel mandrel OD = 139.8 mm
- Stainless steel mandrel ID = 133 mm
- t (mandrel) = 3.4 mm
- Inductance = 56 μ H (per core)
- Resistance = 190 Ω (per core)

Switch Specs

- Operation peak voltage = ± 6 kV
- Operation peak current = 13 A
- HTS 161-06-GSM switch specs:
 - Max peak voltage = ± 2 x 8 kV
 - Max peak current = $2 \times 60 \text{ A}$
 - Max burst frequency = 2 MHz
 - Rise and fall time = 20 ns
 - Min pulse width = 200 ns
 - Min pulse spacing = 400 ns

Summary

- Barrier RF for beam stacking is another application of induction devices in accelerators
- Unlike an acceleration RF, the barrier RF has following features: high peak voltage, high peak current, burst mode operation, low duty factor
- Finemet cores and HTS switches can meet the requirements
- A barrier RF system is being built at Fermilab

Questions?